Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1646
Title: Minimum-Entropy, PDF Approximation, and Kernel Selection for Measurement Estimation
Authors: De la Rosa Vargas, José Ismael
Fleury, Gilles
Davoust, Marie Eve
Issue Date: Aug-2003
Publisher: IEEE Transactions on Instrumentation and Measurement
Abstract: The purpose of this paper is to investigate the selection of an appropriate kernel to be used in a recent robust approach called minimum-entropy estimator (MEE). This MEE estimator is extended to measurement estimation and pdf approximation when p(e) is unknown. The entropy criterion is constructed on the basis of a symmetrized kernel estimate p_hat (e) of p(e). The MEE performance is generally better than the Maximum Likelihood (ML) estimator. The bandwidth selection procedure is a crucial task to assure consistency of kernel estimates. Moreover, recent proposed Hilbert kernels avoid the use of bandwidth, improving the consistency of the kernel estimate. A comparison between results obtained with normal, cosine and Hilbert kernels is presented.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1646
https://doi.org/10.48779/7w3h-8v75
ISSN: 0018-9456
1557-9662
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
1_DelaRosa IEEETIM P1 2003.pdfDelaRosa IEEETIM 2003757,66 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons